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SUMMARY 

This paper deals with the non-stationary incompressible Navier-Stokes equations for two-dimensional 
flows expressed in terms of the velocity and pressure and of the vorticity and streamfunction. The 
equivalence of the two formulations is demonstrated, both formally and rigorously, by virtue of a 
condition of compatibility between the boundary and initial values of the normal component of velocity. 
This condition is shown to be the only compatibility condition necessary to allow for solutions of a minimal 
regularity, namely H' for the velocity, as in most current numerical schemes relying on spatial discretiza- 
tions of local type. 
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1. INTRODUCTION 

The formulation of the incompressible Navier-Stokes equations in terms of the so-called 
non-primitive variables vorticity and streamfunction represents the most popular approach 
for the study of steady and unsteady viscous flows in two dimensions. The equivalence 
of the vorticity-streamfunction equations with the original primitive variable formulation 
of the viscous incompressible problem is well established only for the steady state equations, 
which constitute a standard elliptic boundary value problem. In the time-dependent case 
the governing equations constitute instead a mixed initial-boundary value problem and to 
our knowledge a proof of the equivalence of the vorticity-streamfunction and velocity-pressure 
formulations in the presence of solid boundaries does not seem to be available to the fluid 
dynamics community. 

The present paper intends to show that the equivalence of these two formulations of the 
non-stationary Navier-Stokes equations can be demonstrated, both formally and rigorously, 
provided that the normal component of the boundary value of the velocity is compatible with 
that of the initial velocity. Such a compatibility condition together with the solenoidality 
condition for the initial velocity field allow for an optimal choice of the linear space to which 
the initial datum should belong. The optimal setting in question has been provided by 
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Ladyzhenskaya (Reference 1, p. 88) and Temam (Reference 2, p. 253) and includes the optimal 
condition of compatibility between the data specified for the (normal component of) velocity on 
the boundary and at the initial time, such that the existence and uniqueness of the solution are 
an easy consequence of Lions’ theorem (Reference 3, p. 257; Reference 4, p. 218). 

It should be remarked that the same conditions of solenoidality and compatibility between 
the boundary and initial data are also necessary to prove the existence and uniqueness of classical 
solutions of the time-dependent 2 D  Euler equations for an incompressible ideal fluid of zero 
viscosity.’ Thus the presence of the compatibility condition is due only to the incompressibility, 
irrespective of the viscous or inviscid character of the fluid. 

Additional compatibility conditions concerning the tangential components of the initial 
velocity field and the boundary condition have been considered for the viscous equations. 
However, the condition on the tangential components of the initial velocity is unnecessarily 
stringent. As shown further, the solenoidality of the initial velocity and the compatibility of the 
normal component of the boundary value of the velocity with that of the initial velocity field 
are all that is needed for ensuring existence of a solution with some minimal regularity, whereas 
compatibility of the tangential components of the initial and boundary data is required only if 
higher regularity is desired (see e.g. Reference 6). 

It can also be noted that there are computational fluid dynamicists who believe that no 
compatibility condition exists between the initial and boundary data for the incompressible 
Navier-Stokes problem, exactly like none exists for the parabolic equation governing the 
diffusion of temperature in a heat-conducting medium. After all, the equations governing the 
motion of a viscous fluid define a parabolic problem, so that no basic difference is expected in 
the mathematical structure with respect to the diffusion equation. However, this argument is 
not completely correct, because it neglects the role played by the incompressibility in the 
mathematical theory of the Navier-Stokes equations. In fact, the argument denying the existence 
of any compatibility condition between initial and boundary data is correct only as far as the 
tangential components of the velocity are concerned, while it is false when referred to the 
component normal to the boundary and to a vector field which must be solenoidal. This 
misunderstanding can explain why the importance of the aforementioned compatibility condition 
in viscous incompressible flows has not been fully recognized so far in the CFD community. In 
this connection it may be worthwhile to remark that the unsteady incompressible Navier-Stokes 
equations do define a parabolic problem, but only after it has been projected on to the space 
of solenoidal vector fields tangential to the boundary, and this means taking an initial velocity 
field which satisfies the compatibility condition. 

The content of the paper is organized as follows. In Section 2 the complete statement 
of the unsteady Navier-Stokes equations governing the primitive variables velocity and 
pressure is given. Section 3 introduces the non-primitive variable representation of the equations 
in terms of vorticity and streamfunction for two-dimensional flows. This section also provides 
a formal proof of the equivalence of the two formulations for unsteady flows, whose under- 
standing does not require tools of functional analysis. Section 4 contains the definitions 
and preliminaries which provide the mathematical framework needed for rigorous treatment 
of the problem. In Section 5 classical results concerning the velocity-pressure formulation 
are recalled so as to be able to show the well-posedness of the time-dependent problem 
expressed in terms of vorticity and streamfunction variables. Section 6 finally demonstrates the 
equivalence of the two considered representations of unsteady incompressible viscous flows in 
two dimensions. 
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2. INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 

The motion of a viscous incompressible fluid is governed by the Navier-Stokes equations 

au 
- + (U'V)U = - v p  + vv2u + f, 
at 
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v . u  = 0, (2) 

where u(x, t )  is the velocity, p(x, t )  is the pressure and v is the (constant) coefficient of kinematic 
viscosity, the constant density of the fluid having been absorbed into the pressure. The term 
f(x, t )  on the right-hand side of the momentum equation (1) represents the body forces. 

The statement of the problem is made complete by the specification of suitable boundary and 
initial conditions. A typical boundary condition consists of prescribing the value of the velocity 
b o n  the boundary, 

ulan = b, (3) 

where dR is the boundary of the domain R occupied by the fluid and b = b(x,,, t ) .  When the 
boundary is a solid wall in contact with the fluid, the velocity boundary value b is equal to the 
velocity of the wall. In this case the boundary condition for the tangential velocity is usually 
referred to as a no-slip condition. In the following we restrict our analysis to 2D problems and 
assume that the fluid domain R is bounded and simply connected, which means that it is of 
finite extent and contains no holes. Furthermore, R is assumed to be open and an to be smooth 
enough, say Lipschitz-continuous. 

The initial condition consists of the specification of the velocity field uo at the initial time 
t = 0, namely, 

(4) u I f  = 0 = uo(x). 

The boundary velocity b must satisfy for all t 2 0 the global condition 

which follows from integrating the continuity equation V * u = 0 over Q. On the other hand, the 
initial velocity field uo is assumed to be solenoidal, i.e. 

v - uo = 0. (6) 

Finally, the boundary and initial data b and u,, are assumed to satisfy the compatibility condition 

n-bl , , ,  = n.uolan. (7) 

The subsequent analysis will show that the condition (6)  on the initial data and the compatibility 
condition (7) between the initial and boundary data are required to establish the equivalence of 
the present velocity-pressure formulation and the vorticity-streamfunction formulation. As a 
matter of fact, they are also necessary to prove the existence and uniqueness of classical solutions 
of the non-stationary Euler equations in two dimensions for an inviscid incompressible fluid.5 

The compatibility condition (7) is not satisfied for problems characterized by an impulsive 
initial motion of bodies or walls in contact with the fluid. However, in these situations the proper 
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initial condition for the flow around the body is given by a potential flow that establishes itself, 
by virtue of the incompressibility, in response to the sudden motion of the boundary; see e.g. 
the discussions in Reference 7 (p. 80) and Reference 8 (p. 81). The initial potential velocity field 
is caused by the ‘jump’ between the different values prescribed on the normal velocity by the 
boundary condition and by the initial condition. More precisely, if n .  bl,=, # n.uolan, one 
introduces a velocity potential 0, solution to the Neumann problem 

whose solvability condition $n - (bl,=, - uolan) dT = 0 is satisfied by conditions ( 5 )  and (6). Then 
the initial velocity is replaced by a ‘modified’ initial velocity u$ defined as 

uo* = uo + v0,. (9) 

With this modified initial field the compatibility condition (7) is automatically satisfied, since 

n * uo* Ian = n - (uo + V@o)Im 
= n*u , l i i a  + n*bl,,, - n.u,I,, 
= n .  bl,=, 

by virtue of the boundary condition imposed on 0, in problem (8). Thus, provided that the 
initial velocity field is modified according to (9), the fulfilment of the compatibility condition (7) 
between the boundary and initial data can be ensured, even for problems involving an impulsive 
motion of the boundaries. It should be noted that in these cases a discontinuity in the tangential 
components of the velocity on the boundary is usually produced by the introduction of the 
initial potential flow VQ,, namely it results in general that 

n x bit=, # n x ~ $ 1 , ~ .  (10) 

This means that in the case of an impulsive start the H’-norm of the velocity field necessarily 
blows up as t + 0. 

Note that this loss of regularity of the solution is more dramatic than that pointed out by 
Heywood and Rannacher (Reference 6, p. 277). Indeed, they assumed no-slip conditions at all 
times and observed a loss of regularity in the H3-norm of the velocity field as 1 -+ 0 unless the 
data satisfy some (non-local and virtually uncheckable) compatibility conditions that enable the 
initial pressure to satisfy an overdetermined Poisson problem. 

3. VORTICITY-STREAMFUNCTION EQUATIONS 

Coming to the numerical solution of the Navier-Stokes equations, a serious difficulty is met in 
the determination of the pressure field and in the fulfilment of the incompressibility condition. 
In fact, the continuity equation (2) is somewhat peculiar in that it represents a constraint for the 
velocity field. At the same time the pressure variable, which appears in the momentum equation 
through the term Vp, provides the degrees of freedom necessary to accommodate and satisfy 
such a constraint. Correspondingly, no dynamical equation exists for the pressure, so that in 
incompressible problems this variable does not have the usual thermodynamical meaning. Here 
the role of the pressure is that of adjusting itself instantaneously in order that the condition of 
zero divergence be satisfied at every time. This behaviour is related to the well-known fact that 
in an incompressible fluid the value of the speed of sound becomes infinite. As a consequence, 
the pressure field cannot be calculated by an explicit time advancement procedure but requires 
instead an implicit determination capable of taking into account the coupling existing between 
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the pressure and the velocity as well as the effect of the velocity boundary condition. This aspect 
can be considered the most distinctive feature of the primitive variable formulation of the 
incompressible Navier-Stokes equations. 

A well-known method for circumventing this kind of difficulty in the solution of two- 
dimensional problems consists of eliminating the pressure variable altogether and introducing 
two scalar functions, the vorticity and the streamfunction, as unknown variables. For fluid 
motions parallel to the plane xy  the vorticity [ is the z-component of the vorticity vector 
6 = V x u normal to that plane, namely 

j = V x u . k  or [ k = V x u ,  (1 1) 

where u = ( u x ,  uy), V = (a/ax, d / d y )  and k is the unit vector normal to the plane xy. In two 
dimensions the condition of incompressibility V - u = 0 can be satisfied exactly by expressing u 
in terms of a streamfunction $ according to 

This equation, once expressed in terms of the vector components, gives u, = d$/ay and 
uy = -d$/dx. Thus one obtains immediately 

We now eliminate the pressure from the Navier-Stokes equations by taking the curl of the 
momentum equation. To simplify the derivation, the non-linear term is first expressed in the 
so-called Lamb form, namely 

(U V)U = (V x U) x u + V ( ~ U ’ )  = j k  x u + V(~U’) .  

Then the application of the curl operator to the non-linear term gives 

V x [(u V)U] = V x [jk x u + V(~U’)]  = V x [[k x u], 

so that the curl of the momentum equation (1) gives the equation 

a 
at 
- ( jk)  + V x ( jk  x U) = VV’(4‘k) + gk, 

where g = V x f * k. Consider now the vector identity 

V x ( a  x b ) = a V . b - b V * a + ( b . V ) a - ( a . V ) b  

and use it with a = V x u, b = u and V - u = 0 to give 

v x [(V x u) x u] = (U’V)V x u - (V x U’V)U. 

In the present 2D situation V x u = [k, while the second term on the right-hand side vanishes, 
since u does not depend on z. It follows that V x [[k x u] = (u V)[k, so that the curl of the 
non-linear term in two dimensions can be expressed in the form 

V x [(u - V)U] = V x (Ck x U) = (U * V)[k. 
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By virtue of the representation u = V+ x k, the curl of the non-linear term can be given the 
final form 

where, as usual, J denotes the Jacobian determinant. 

equation 
In conclusion, taking the curl of the momentum equation leads to the vorticity transport 

a i  
- + 4 5 ,  *) = v v 2 r  + g. 
at 

On the other hand, substituting the expression u = V$ x k into the vorticity definition (1 1) gives 
the following Poisson equation for the streamfunction: 

-v=+ = 5. 
The boundary conditions supplementing the two equations above are deduced by separating 

the normal and tangential components of the velocity boundary condition ulan = b. Here dR 
represents the boundary of the two-dimensional domain Q, which is always assumed to be simply 
connected. Let n denote the outward unit vector normal to the boundary aR and t the unit 
vector tangential to aR with anticlockwise orientation. Finally, let s be the curvilinear co-ordinate 
along the boundary aR. Then the boundary condition Ulan = b yields the condition for the 
normal component, 

and for the tangential component, 

The first boundary condition, after integrating its right-hand side, provides a Dirichlet condition 
for $. By virtue of the global condition (Pan n * b ds = 0, such an integration defines a single-valued 
function up to an arbitrary additive function of time, namely 

a(s, c )  = n(s') - b(s', t )  ds' + A(t), ls: 
where s1 is the co-ordinate of any fixed point of 8 0  and s' is a dummy variable of integration. 
To simplify the expression of the boundary conditions for $, we drop the term A(t) from the 
Dirichlet condition and introduce the notation 

b(s, C) = - t(~) * b(s, t), 

so that the two conditions can be written as 

(Note that b should not be confused with I bl, i.e. b # I bl.) 
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As far as the initial condition for the system of equations governing [ and $ is concerned, 
the initial velocity field uo provides the following initial condition for the vorticity : 

j l ,=o = V x ( u I , = ~ ) *  k = V x u0- k. 

Collecting the equations and conditions all together, the vorticity-streamfunction formulation 
of the Navier-Stokes problem for two-dimensional flows is 

1 -v2* = i, 

where g = V x f * k, a = S;, n - b ds' and b = -7  - b. The initial datum uo(x) and the boundary 
datum a(s, t )  are assumed to satisfy the conditions 

the latter being nothing but the compatibility condition (7) rewritten in terms of the Dirichlet 
datum a = a(s, r ) .  The global condition $an n - b ds = 0 does not appear any more because it has 
already been taken into account in the definition of the single-valued function a(s, t ) .  

Theorem I 

The vorticity-streamfunction problem (13) is equivalent to the original primitive variable 
Navier-Stokes problem (1H7) in two dimensions provided that the two conditions (14) on the 
data are satisfied. 

Prooj The implication is evident. Conversely, let us assume that [ and $ are solutions to the 
set of equations and conditions (13) with the data u,, and a satisfying (14). Let us consider for 
t z 0 the vector field v = V$ x k. First, v is solenoidal, since V - v = V - (V$ x k) = 0. Further- 
more, its curl satisfies V x v = V x (V$ x k) = -V2$k = jk, since -V2$ = [. Hence the 
vorticity equation in (13) gives 

av x v 
at 

___- vV2V x v + J(V x V, $) = gk. 

By virtue of the vector identity used before and since V - v = 0, the non-linear term can be 
expressed as 

J(V x v, *) = (v - V)V x v = v x [(V x v) x v] 
= v x [(v - V)v - V(fU2)] = v x [(v * V)v]. 

Recalling that gk = V x f, the vorticity equation gives 

v x - - vv2v + (V'V)V - f = 0 (: ) 
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aV 
- - v v z v  + (V'V)V - f = vq 
a t  

for some scalar function q. In order that v can be identified with the velocity field u solution of 
the original problem (and q with - p ) ,  it remains to show that v assumes the same boundary 
and initial values of u. For the boundary values it results that vldn = V$ x kl,,, which, after 
separating the normal and tangential components, gives 

t . v J , , = r - V $  x kl , ,=k  x t - V $ I d n =  - n - V $ I a n =  -- = - b = t . b .  iz /do 

Hence v ( , ~  = b = ulan. Concerning the initial values, one has to determine the values assumed 
by v as t -+ 0' as a consequence of the imposition of the initial condition for i in the i-$ system. 
One has 

V I , = ~  = lim v(x, t )  = lim V$(x, t )  x k = V lim $(x, t) x k. 
1-Of  1-0+ Lo+ ) 

Let t j 0  denote the solution of the Dirichlet problem 

-V*$, = lo = V x uo * k, $elan = @, 0). 

By the assumed continuity of u(s, t )  as t 
Dirichlet problem implies that lim,,,+ $(x, t) = I)~(X), so that 

0' and since io = ill=o, the well-posedness of the 

vI,=o = V $ ~ ( X )  x k. 

Using the identity V x (Vf x k) = -V2fk in the Poisson equation above, one obtains V x 
(V$o x k) = V x uo or V x (Vt+b0 x k - uo) = 0. It follows that 

V$o x k - UO = V a  

for some scalar function ol. Now V * (Vt,b0 x k) = 0 and V * uo = 0 by the first condition in (14), 
so that a is harmonic in R. Furthermore, taking the normal component of V+h0 x k - uo on do, 

n - V$o x k Ian - n * uO1,, = k x n V$o lBn - n - UOldQ = t - %,b0 Ian - n * uo Id, 

by virtue of the second condition in (14). It follows that n -  Val,, = da/anI,, = 0, so that 
a = constant. In conclusion, V$,, x k = uo everywhere in R and therefore V I , = ~  = uo. This 
completes the proof. 0 

Remark I 

The vorticity-streamfunction problem could also be stated by specifying the initial condition 
for the vorticity directly in terms of a prescribed initial vorticity field c0, namely 

i L = o  = T o ,  
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where lo is an arbitrary function, with no reference to an initial velocity field. It will be shown 
further that i and tj are continuous functions with respect to the time variable with values in 
H -  '(Q) and H'(R) respectively. As a result, the Dirichlet problem 

$t, t = 0)lm = 4s, 0) -V 2 $(, r = 0) = lo, 

is meaningful in the usual weak sense (i.e. in H-'(R) x H1l2(aR)). If we set ii, = V$(., t = 0) x k, 
we obtain 

lo = V x iio k, 
we necessarily have V * ii, = 0 and by classical arguments (Reference 9, p. 27) the boundary 
condition n - iiolan = da(s, O ) / h  is meaningful in some weak sense (in H-'/'(dR) as a matter of 
fact). That is, iio necessarily satisfies conditions (14). In conclusion, if continuity of $ and l with 
respect to time and values in H'(R) and H -  '(Q) is assumed, to is necessarily the curl of a velocity 
field iio which satisfies (14). As a result, equivalence of the C-$ formulation with some u-p 
formulation can be achieved only if the initial data of the u-p problem satisfy (14). 

Remark 2 

If no regularity higher than that of H-'(SZ) is wanted for lo, the Neumann condition 
a$(., t = O)/dnI,, = b(s, 0) is meaningless; hence no compatibility condition is required for b at 
t = 0. However, if lo E L2(R), the normal derivative of $(., t = 0) is meaningful in H -  ''2(dQ) 
(Reference 9, p. 27) and b(s, t = 0) = a$(., t = O)/anl,, is a compatibility condition that must be 
satisfied by b. If b does not satisfy it, there is no possibility for $ to be in Co([O, T I ;  H2(R)); in 
other words, 1 1 $ 1 1 2  will necessarily blow up as r -, 0. This loss of regularity as t + 0 is similar to 
that already discovered for the u-p formulation in the previous section. Indeed, the compatibility 
condition in question amounts to 

(15) 

Now, in order to prove the equivalence of the l-$ and u-p formulations in some rigorous 

n x bl,=, = n x uOlaR 
and this condition has been shown to be violated in the case of an impulsive start. 

way, we introduce some definitions and preliminary results. 

4. DEFINITIONS AND PRELIMINARIES 

In the following, the set of real functions infinitely differentiable and of compact support in R 
is denoted by a@). The set of distributions on R is denoted by 9'(SZ). Spaces of vector-valued 
functions are hereafter denoted with boldface type, though no distinction is made in the notation 
of inner products and norms. 

In order to have some unitary framework for the curl operator in a two-dimensional space, 
we introduce 

curl: Q'(Q) -W(R) 
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Note that we have curl 4 = V 4  x k and curl v = V x v - k. Note also that curl and curl are 
transpose to each other in the following sense. 

Vv E ~ ' ( Q ) ,  V+ E 9(Q), 

Vv E ~ ( Q ) ,  V 4  E 9'(Q), 

(curl v, 4) = (v, curl 4), 
(4, curl v )  = (curl 4, v). 

It is a simple matter of calculus to show the following identities which will be used repeatedly: 

Vv E ~ ' ( Q ) ,  curl curl v = - V 2 v  + V(V v), 

tr+ E g'(Q), curl curl 4 = -V4. 
As usual, LZ(Q)  denotes the space of real-valued functions, the squares of which are summable 
in Q. We denote the inner product in L2(Q) by (., .) and let 11 * \ l o  be its norm. H"(Q), m 2 0, is 
the set of distributions the successive derivatives of which, up to order m, can be identified with 
square summable functions. The space H"(Q), equipped with the norm 

expressed in the multi-index notation, is a Hilbert space. Now we define H t ( Q )  as the completion 
of 9(Q) in H"(Q) and we denote H-"(Q) the dual of Ht(Q) .  The duality product is denoted by (, .). 

Analogues to (18) and (19) are now given by the following. 

Lemma 1 

Let m 2 0: 

Vf E H-"(Q), V$ E H t +  '(a), (curl f, 4) = (f, curl $), 

Vf E Ht+'(R), V 4  E H-"(Q), (4, curl f) = (curl 4, f). 
(22) 

(23) 

ProoJ Use density of 9(Q) in H t + ' ( Q )  and continuity of duality product. 

The analysis of the Navier-Stokes equations leads us to consider solenoidal velocity fields; 
hence we define /(Q) = { v  EC@(Q), V * v = 0} and we denote Jt(Q), m 2 0, the completion of 
y(Q) in H"(Q). Spaces Jg(Q) and J@) are characterized by the following. 

Theorem 2 

If Q is open, bounded and Lipschitz in the plane, then 

J:(Q) = { v  E L2(Q); V - v = 0, n - vlan = 0}, 

JA(iZ) = { V  E H'(Q); V * v = 0, ~ l a n  = O}. 

ProoJ See e.g. Reference 2 (pp. 15-18). 

An important connection of the spaces above with the curl and curl operators is given by the 
following. 
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Lemma 2 
Assuming R is simply connected, then we have the following isomorphisms: 

(i) curl: HA@) -, J:(R), 
(ii) curl: H i @ )  -+ J,!,(Q), 

(iii) curl: 
(iv) curl: V2JA(R) + 

JE(R) -, H - '(R), 

Proof: (i) The range of curl is in J:(R). Let # E Hh(R) and define {#,,} E Q(R)" a sequence so that 
-, # in HA@). It is easy to see that the sequence {curl #,,} is in $(R) and that curl #,, -, curl # 

in L2(R); as a result curl # is necessarily in J:(R) by definition of J:(R). 
Continuity. The continuity is evident: IIcurl# II 6 11 # 11 
Injectiuity. Let # E H;(R). Then 

curl # = 0 * curl curl # = 0 
*V2# = O  by (21) 

# = 0 since # len = 0. 

Surjectiuity. Let f E J:(R); there is # E H,!,(R) such that -V2# = curl f, i.e. curl (curl # - f )  = 0. 
As a result of Lemma 3 below which generalizes Stokes' theorem, there is p E H'(R)/IW so that 
curl # - f = V p .  Hence V p  E J:(R); in other words V2p = 0 and dp/dnlan = 0; as a consequence 
p = constant and curl # = f. 

Surjectiuity. Let f E  JA(R); from (i) we infer that there is # EH,!,(R) such that curl # = 
(a# /dy ,  -d#/ax) = (f,,f,) = f. Since f E JA(R) c H'(R), it follows that d#/dx E H'(R) and d# /ay  E 

H'(R), i.e. # E HZ(R) n Hh(Q). Furthermore, since f E HA(R), we have V#13n = 0; hence 
d#/dnI,, = 0, which means # E Hi(R). 

(ii) The range of curl is in JA(R); continuity and injectivity as in (i). 

(iii) Is obtained from (i) by duality, since Jg(R), E J:(R). 
(iv) Results from (ii). Let f E H - ~ ( R ) .  Consider the problem: find U E  JA(R) such that 

curl V2u = f in K 2 ( R ) .  Since Hi(R) = curl-' JA(R), this problem is equivalent to: find u E JA(R) 
0 such that -(Vu, Vv) = ( f ,  curl- ' v) for all v E JA(R). Such a problem is well-posed. 

We now state the main result, which involves the simple connectivity of the domain R. 

Lemma 3 

If R is simply connected, for u E L2(R) we have 

(curl u = 0 in R) e (3! p E H'(R)/[W; u = Vp). 

Proof: See e.g. Reference 9 (p. 31). 0 
It is necessary for later results to isolate solenoidal distributions of H- '(R) and solenoidal 

velocity fields in Lz(R). This is achieved by the following result. 

Lemma 4 

We have the decomposition 

H-'(R) = V2JA(R) @ V(L2(Q)/R). 
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Proof: This is equivalent to the fact that Stokes' problem is well-posed; see e.g. Reference 2 

Note that the distributions of V2J&(Q) are solenoidal and V2J@) is isomorphic with the dual 
of J&(Q). Since V2JA(Q) is a closed subspace of H-'(Q), we can define the orthogonal projection 
on it; such a projection is hereafter denoted by [ro - ': H-'(R) + V2JA(Q). 

(pp. 21-24). 0 

Lemma 5 

We have the decomposition 

L2(Q) = J;(Q) @ V(H'(Q)/R). 

Proof: Let f E L2(R); there is a unique p E H'(R)/R such that 

vq E H ' ( Q ) ,  (VP, v44 = (f9 V d .  

Then set u = f - Vp. One verifies easily that since V - f = V2p in H -  '(Q), u E Jg(Q). 0 
Note that Jg(Q) is closed in L2(Q) so that one can define the orthogonal projection on it; i t  

Finally, we state the result which, combined with Lemma 2, will enable us to prove the 
is hereafter denoted by ITTI o: L2(iZ) + JE(Q). 

equivalence of the u-p formulation of the Navier-Stokes equations with the [-$ one. 

Lemma 6 

Let E and F be two Banach spaces and d: E + F be an isomorphism. Let T > 0 and 
1 6 p < 03 and define 

dp: Lp((O, T ) ;  E )  -+ Lp((O, T ) ;  F )  

.s,: C(C0, TI; E )  + C(C0, TI; F )  

w(t)  ++ *Mw(t))  

Then dP and dc are isomorphisms. 

5. THE U-p FORMULATION 

In this section we recall classical results concerning the u-p formulation that will be used to 
show the well-posedness of the [-$ problem. Homogeneous boundary conditions are assumed 
for the sake of simplicity. Let T > 0 and consider the unsteady Navier-Stokes equations on the 
time interval (0, T) .  One classical way of looking at this problem is as follows (Reference 10, pp. 
64-78): 

for f E L2((0, T ) ;  H- '(Q)) and uo E Jg(Q) find 

u E L2((0, T ) ;  JA(Q)) n L"((0, T ) ;  Jg(Q)) and 

p E La'(l0, T [  x Q) such that 
9' {f, uo> 

- vV2u + (u - V)u + Vp = f in 9'(]0, T [  x Q), 
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Note that this problem is not of Cauchy-Kowalewsky type, i.e. there is no dynamical equation 
for the pressure. The main difficulty associated with this fact, as noted in Section 3, is that when 
coming to a numerical approximation to Yl{f, u,}, the pressure field cannot be calculated by 
an explicit time advancement procedure. One possibility for circumventing this major difficulty 
is to take the quotient of the dynamical equation by all the gradients or, equivalently, project 
it on to V'J;(Q). Thus we consider the problem 

for f E L'((0, T ) ;  H - '(Q)) and uo E J@2) find 

u E L'((0, T ) ;  JA(Q)) n L"O((0, T ) ;  JE(0)) such that 

Vv E JA(Q) n L"(Q), 

uI,=o = 43. 

where n is the dimension of the physical space (hereafter n = 2) and the forms a and b are defined 
by 

a(u, v) = (VU,  VV), b(u, v, w) = ((u - V)v, w). 

Remark 3 

we have J;(!J) n L"(R) = JA(Q), so we no longer bother with L"(Q) (Reference 10, p. 66). 
The trilinear form b: J,$2) x JA(Q) x L"(Q) + R is continuous, but for space dimension n < 4 

The important point is the following. 

Theorem 3 

Problems Yl{f, uof and Y2{f, uo} are equivalent. 

Proof: (a) Yl e- P2. Let u be a solution to P1{f, u,}. Then V+ E$(Q), 

Y(Q) being dense in JA(Q) n L"(Q), we can take the limit, i.e. Vv E JA(Q) n L"(Q), 

Hence u is a solution to Y2{f, u,}. 
(b) ,Yz Yl. Let u be a solution to g2{f, uo}. Then the linear form 

au 
- - vvzu  + ( U ' V ) U  - I l l p 1  f 
at 

vanishes on g(30, T [ ;  JA(Q)). Furthermore, since there is some j E L2(Q)/R such that f = 
[ro - f + V j  according to Lemma 4, the conclusion above holds also for the linear form 

au 
~ - VV'U + ( U ' V ) U  - 0-u - 1  f - vj. 
at 
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As a result of De Rham’s theorem,” there is p E 9’(]0, T [  x Q) such that 

~ - vv’u + (u-V)u - f = -Vp in 9’ ( ]0 ,  T [  x a). au 
at 

Hence (u, p )  is a solution to Pl{f, u,}. 

Remark 4 

For arbitrary n and finite time T it can be shown that P2{f,uo} has at least one solution. 
Furthermore, the initial condition may be given some precise sense (Reference 10, pp. 64-106). 
It turns out that in 2D ( n  = 2) there is uniqueness of the solution and the velocity field belongs 
to C([O, T I ;  J;(Q)). In other words, in 2D, u(t) with values in J;(Q) is a continuous function with 
respect to the time variable. In this context the initial condition is easily interpreted. 

We turn now to the 2D formulation in terms of the vorticity and streamfunction, always 
assuming that R is simply connected. 

6. THE [-I) FORMULATION 

In this section we consider the problem 

for g E L’((0, T ) ;  H-’ (Q) )  and to E H -  ‘(0) find 

i E L’((0, T ) ;  L’(R)) n C([O, T I ;  H - ’ ( Q ) )  and 

$ E L’((0, T ) ;  Hi(S2)) n C([O, T I ;  HA(Q)) such that 

-V2$ = i in L’(Q), 

i l ,=o = lo in H - ’ ( Q ) .  

One question that arises at  this point is whether g and co are the curls of some body force 
and initial velocity field respectively. The answer to this question is given by the following. 

Lemma 7 

(i) There is some f in  L’((0, T) ;  H -  ’(Q)) and a unique lrI - f in  L’((0, T ) ;  V2JA(Q)) such that g = 

(ii) There is some u, in L’((0, T ) ;  L’(Q)) and a unique no uo in L’((0, T ) ;  J:(Q)) such that to = 
curl (D - 9 = curl (9. 

curl (,OTlo u,) = curl (u,,). 

Proof: Apply parts (ii) and (iv) of Lemma 2 together with Lemmas 4 and 5. 

The other question that has to be addressed now concerns the equivalence of P3{g ,  to} with 
the same Navier-Stokes problem of type q2{f, u,}. It turns out, as shown below, that P3{g, lo} 
is equivalent to P2{Oa - f, Oa, u,}. Indeed, the only way to impose that P3{g, to} be equivalent 
to a unique Navier-Stokes problem of type P2 is to require the initial velocity field of Pz to be 
in JE(Q). In other words, the equivalence of a &I) problem with some definite u-p problem is 
achievable only if the initial velocity field of the u-p problem is in J;(Q), namely 

V - u ,  = 0 and n-u, l ,= ,  = 0. 
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These conditions coincide with those considered in (14) in the particular case of homogeneous 
boundary conditions for the velocity. 

Theorem 4 

Problem Y3{g, lo} is equivalent to P2{ 1171- f, [roo u,}. 

Prooj (a) Note that in 2D the solution velocity field u is in C([O, TI; Jg(C2)) and C([O, TI;  
Jg(f2)) c L"((0, T ) ;  JE(C2)). As a result, P2{f, u,} is still well-posed if we restrict the solution to 
be in L2((0, T ) ;  JA(i2)) n C([O, TI; Jg(i2)). 

(b) According to Lemmas 2 and 6, assuming that there is a unique u solution to 
P2{07 - f, 07, u,} is equivalent to assuming that there i s  a unique 

$ E L2((0, 0; H m )  n C(C0, TI; H m ) )  

such that curl + = u. 
(c) Furthermore, denoting ( = -Vz+, we necessarily have 

( E ~ ' ( ( 0 ,  T ) ;  L2(Q)) n C([O, TI; H -  '(0)). 

(d) According to part (i) of Lemma 2, the momentum equation of P2{f, u,} is equivalent to 

(: curl +, curl 4 + va(curl+, curl 4) + b(curl+, curl +, curl 4) = (1171 - f, curl 4) in 9'( ]0,  T[), ) 
v+ E Hi(C2). 

It is decomposed as follows. 

This is a consequence of the fact that u E L2((0, T ) ;  J,$2),) (Reference 10, p. 64) and 
far-reaching density and trace theorems (Reference 3, pp. 14 and 23; Reference 12, p. 575). 
Then, thanks to Lemma 1 and (21), we have 

(ii) The diffusion term is easily shown to yield 

va(cur1 $, curl 4) = - v(V2[, 4). 
(iii) The convection term yields 

b(cur1 $, curl $, curl 4) = (curl (curl (u)k x u + V(fu2)), 4)  
= (u - V(cur1 u), 4) 
= (curl t,h * V(cur1 curl $), 4) 
= (curl ($1 * VY, 4). 

(iv) The source term gives 

(1171- I f, curl 4) = (curl Ul- f, 4) = (g, 4). 
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As a result the momentum equation can be equivalently written in the form 

al 
- - vv21 + curl ($) - V[ = g in ~ ( 1 0 ,  T [ ;  H-’(n)). 
at 

(e) It remains to be shown in which terms the initial conditions are equivalent (see Remark 
1). Since we want $ to be in C([O, T I ;  H;(Q)),  we necessarily have 

-Vz$(., t = 0) = lo in H-’(n), 

i.e. curl (curl $(., t = 0)  - no u) = 0 in H -  ‘(Q). However, curl $(., t = 0) - W o  uo E Jg(Q); hence, 
according to part (iii) of Lemma 2, 

curl I)(., t = 0) = U7 uo. 

In other words, specifying = io in problem P3 is equivalent to specifying U I , = ~  = Dlo uo in 
problem P2. 

Remark 5 

The key point here is that we require II/ E C([O, T I ;  HA@)), which in terms of velocity 
(according to Lemma 6) is equivalent to requiring u to be in C([O, T I ;  J;(n)). In other words, 
$ cannot be in C([O, TI; Hh(l2)) unless u(, t = 0) is in Jg(n), i.e. satisfies (14). 

Remark 6 

Problem P3{g ,  lo}  is well-posed. 

7. CONCLUSIONS 

Equivalence of the vorticity-streamfunction equations with the primitive variable formulation 
of the unsteady incompressible Navier-Stokes equations has been established. One formal proof 
and a mathematical proof with a rigorous setting have been given so that the arguments are 
intelligible to as wide an audience as possible. It has been shown that minimal compatibility 
conditions on the initial data and the boundary condition are required so that existence and 
unicity of a solution of minimal (reasonable) regularity are ensured. These compatibility 
conditions have been shown to play an important role in establishing the equivalence of the 
two formulations referred to above. An additional compatibility condition concerning the 
tangential components of the initial velocity field and the boundary condition is to be satisfied 
if higher regularity of the solution is needed as t --t 0. Anyhow, in the case of an impulsive start, 
the H’-norm of the velocity and the Hz-norm of the streamfunction necessarily blow up as t -+ 0. 
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